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ABSTRACT

This thesis work is to implement the receiver part of the SNR high speed network
transport protocol. The approach was to use the Systems of Communicating Machines
(SCM) as the formal definition of the protocol. Programs were developed on top of the
Unix system using C programming language. The Unix system features that were
adopted for this implementation were multitasking, signals, shared memory, semaphores,
sockets, timers and process control. The problems encountered, and solved, were signal
loss, shared memory conflicts, process synchronization, scheduling, data alignment and
errors in the SCM specification itself. The result was a correctly functioning program
which implemented the SNR protocol. The system was tested using different connection
modes, lost packets, duplicate packets and large data transfers.

The contributions of this thesis are: (1) implementation of the receiver part of the
SNR high speed transport protocol; (2) testing and integration with the transmitter part of
the SNR transport protocol on an FDDI data link layered network; (3) demonstration of
the functions of the SNR transport protocol such as connection management, sequenced
delivery, flow control and error recovery using selective repeat methods of retransmission
and (4) modifications to the SNR transport protocol specification such as corrections for
incorrect predicate conditions, defining of additional packet types formats, solutions for

signal lost and processes contention problems etc.
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L. INTRODUCTION

The SNR protocol is a network transport protocol which was designed to efficiently use
the high transmission rate and low error rate provided by optical fiber links.

As described in [Ref. 1], the key idea in the design of the SNR protocol is to provide a
high processing speed by simplification of the protocol, reduction of the processing overhead and
utilization of parallel processing. In order to achieve these goals, the following design principles
are observed:

. periodic exchange of complete state information and eliminating explicit timers,

. selective repeat method of retransmission,

- the concept of packet blocking, and

- parallel processing.

The SNR transport protocol is intended to connect two host computers end-to-end across

a high-speed network as shown in Figure. 1.1.

Host Host
Entities Entities
| _FTP FTP
TELNET|(—> SNR w SNR | 3] TELNET
OTHERS P 5 P OTHERS

Figure 1.1 - Network, Hosts, Entities and SNR Protocol Process

The protocol requires a full duplex link between two host systems. Each host system in
the network consists of eight finite state machines (FSM), four for executing the transmitter
functions, and four for executing the receiver functions.

The general organization of the machines is shown in Figure 1.2. Each machine in the
protocol performs a specific function in coordination with other machines. The coordination is

established by communicating through shared variables.
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Figure 1.2 - Machine Organization. [From Ref. 1]

Machine T1 is responsible for the transmission of new data packets and retransmission of
old packets. Machine T2 establishes the connection with the receiver and thereafter processes the
incoming receiver control packets and updates related tables and variables as the blocks are
acknowledged. Machine T3 sends transmitter control packets to the receiver periodically.
Machine T4 is the host interface of the transmitter. It inserts the incoming data stream into the
buffer for transmission by machine T1.

Machine R1 removes the data packets from the transmitter channel and inserts them into
the buffer in order according to their sequence numbers. Machines R2 and R3 are receiver
counterparts of transmitter machines T2 and T3. Machine R2 receives the connection request
messages sent by machine T2. After the connection establishment, it receives the transmitter
control packets. Machine R3 sends the receiver control packets at periodic intervals through the
receiver channel. Machine R4 is the host interface of the receiver. It retrieves the data packets
from the buffer and passes them to the host.

The services provided by the protocol are as follows:

- multiplexing, demultiplexing,

- connection management,

- sequenced delivery,




« flow control, and

« €ITOr recovery.
Three modes of operation are specified in this protocol for a more flexible application:

Error Flow Application
control | control :
0 No No Virtual circuit NW, quick interaction, short packets etc.
1 No Yes real time application, packetized voice, real time
monitoring of remote sensor etc.
2 Yes Yes Most reliable, used for large file transfers

Table 1.1: Operation Modes in SNR Protocol [After Ref. 1]

Many studies has been made since the design of this protocol. That include a formal
specification using Systems of Communicating Machines (SCM), global state analysis,
comparison to other existing transport protocols, references and so on. In this paper, an
implementation of the receiver part of this protocol based on an SCM specification provided in
[Ref. 1] is described. Topics are given by focusing on the implementation related issues:

- the change of specification for the implementation (with some error corrections),

- how the receiver was implemented,

- the problems encountered during the implementation,

- how this implementation was tested, and

« how this implementation can be maintained or be extended in the future.

The final goal (though not accomplished yet) of this implementation is to have the

implemented SNR transport protocol to replace the TCP protocol in the TCP/IP network layer.







I1. SPECIFICATION AND MODIFICATION

A. GENERAL

The specification of the SNR protocol that this implementation is based on is from [Ref.
1]. It will be referred to as the specification in the following text. The specification gives a
formal specification for the SNR protocol by using the formal model Systems of Communicating
Machines (SCM). This model was very clear and makes the implementation pretty straight
forward. Due to the fact that this specification has been checked by some simulation model, few
errors were found during the implementation. There were several changes made to the
specification for each machine, some of those were for error corrections and some of those were
for getting around problems encountered during the implementation. In this paper, the

specifications related to the Receiver part will be covered.

1. Change of Specification

The following changes that are common to the Receiver and the Transmitter were made
to the specification.

a. Additional packet type formats. There were three packet types that have formats
defined in the specification [Ref. 1]. They were Receiver control packet format (R _state),
Transmitter control packet format (7T_state) and Data packet format (Data). However in the
specification, four other packet types were mentioned - Conn_req, Conn_ack, Conn_conf and
Conn_disc. These types of packet format were not defined in the specification. By studying of
the function of each packet type and discussion with the author of [Ref. 2], we decided to define
a common packet format for the four packet types. It is called connection packet format
(SNRconn_t in Receiver). Different numbers were used for each packet type for identification.

The connection packet format is given in Figure 2.1.

LCi | Type | Seq# | mode | peakBW| pkiSize|blkSize winSize | RTD

Figure 2.1 - Connection Packet Format




The numbers assigned to each connection packet types were 3 for Conn_req, 4 for
Conn_ack, 5 for Conn_conf and 6 for Conn_disc. Each fields in the connection packet type
(except Conn_disc) were used for negotiate parameters during the connection establishment.

b. Data length field added to the packet header. In the specification, the Receiver has
insufficient information to decide the data length for each data packets. Although the
Transmitter would segment the data into equal sized packets, it is always possible that the last
packet may contain data that does not use all the space provided by a data packet. Ending data
by padding zeros would not work since some data to be transferred could contain bytes of zeros.
Using special bit patterns to indicate the end of data would not work for the same reason. Thus

an extra field for the data length was added to the packet header. Figure 2.2 depicted this

change.

LC! | Type | Seq # |datalen

Figure 2.2 - General SNR Packet Header With Data Length Field Added

B. MACHINE R1

Machine R1 removes the data packets from 7 CHAN and inserts them into their allocated
locations in the buffer INBUF, discards duplicate packets, and updates the structures used for
flow control and error recovery management (RECEIVE, AREC and LOB). In mode 0, R1 passes
the packets to the host directly without buffering and without performing any kind of error or
flow control operation [Ref. 1]. The modified state diagram for machine R1 is depicted in Figure

2.3. The modified Predicate-Action Table is given in Table 2.1.

1. Change of Specification

Changes for machine R1 were as following:

a. In the original specification, there was no paragraph about the initialization in each
machine. Since the Receiver is going to be running in the background as a daemon process,
there should be an initialization for some data structures that would be used repeatedly in each
connection. In R1, the initialization was made in start transition (i.e. transition from state 0 to

state 1). Reference Appendix for more details about the initialization.




finish
receive

Figure 2.3 - R1 State Diagram

Transition Predicate Action
start R_active=T Initialization();
finish R_active=F if (Disconnect = F) then

ProcTchanPkis();

receive T_CHAN[front].type = Data |ProcTchanPkts();

Table 2.1- R1 Predicate-Action Table

b. In the R1 Predicate-Action Table, when R_active = F » Empty(INBUF) in state 1 will
cause the finish transition. This should be corrected as R_active = F * Empty(T_CHAN) since
R1 is responsible to retrieve data packets from T_CHAN and inserts them into INBUF.
Additionally, the predicate condition Empty(T_CHAN) would be checked inside the function
ProcTchanPkis in this implementation thus this predicate condition is not shown in the modified
Predicate-Action Table.

c. The signal provided by the UNIX system was not very reliable. Signals could be lost
during processing (to be described in Chapter III section A.3). To overcome this problem,
whenever R1 receives a signal that informs R1 to retrieve data packets from 7_CHAN, R1 will
try to retrieve all the data packets in T_CHAN. This modification was made inside function

ProcTchanPkts.



d. There would be an unexpected timeout disconnection in mode 0 when transferring a
large file. This was because in mode 0, R1 does not set received to True whenever a data packet
is received. This would cause R3 to expand its time interval to send R_state control packet.
Thus on the Transmitter side, no matter how long can it wait to initiate a timeout disconnection,
there would be always possible to get a file large enough to cause the timeout. This may not be
a problem if mode 0 was not designed to handle large files by the original SNR protocol
designers of [Ref. 3], but however, in this implementation, a change was made to have R1 sets
received 10 True in mode 0 when data packet received to make the protocol more flexible. This
change is made inside the function ProcT: chanPkts.

e. A race condition problem between R1 and R4 caused by parallel processing (se¢
Chapter III section A.5.a for more details.) was solved by having SNR_TC (the process that
handles the packets received from the Transmitter and put them into 7 CHAN) notifies R1 about
the arrival of Conn_disc packet and let R1 notify R2 when all Data packets in I_CHAN has been
processed. The modification for R1 was made inside function ProcTchanPkts.

f In machine R1 State Diagram and Predicate-Action Table, state 2 is an internal state
that R1 will temporarily stay in. When in state 2, R1 could always transit to state 1 by checking
the mode for this connection to perform buffer or no_buf transition. In this implementation, no
state transition would be made for an internal state. The program branches to perform
appropriate processing depending on the related predicate conditions for the internal state. In
this paper, an internal state is drawn as a dash-lined circle in a State Transition Diagram. In
addition, the checking of modes for different processing (no_buf and buffer) was made inside the
function ProcTchanPkts. This further removes the internal state 2 from the modified State
Transition Diagram.

g. There would be no point for R1 to process Data packets in the T CHAN when
Disconnect = T. Under this concern, a checking of Disconnect status is made in the action of the

finish transition to decide whether to perform ProcTchanPkis or not.



C. MACHINE R2
Machine R2 is the receiver counterpart of transmitter machine T2. First, it establishes the
connection with the transmitter and thereafter receives and processes the transmitter control

packets.

In the data transfer phase, R2 receives the control packets from the transmitter and
processes them. It only accepts the packets with monotonically increasing sequence numbers,
discarding all the others. Every time R2 receives a control packet it sets the variable scount to 0,
as an indication to machine R3 that the control packets are being received and the connection is
still alive. This is exactly the same mechanism that the transmitter uses [Ref. 1]. The modified

State Diagram is depicted in Figure 2.4. The modified Predicate-Action Table is in Table 2.2.

discard/update

Figure 2.4 - R2 State Diagram
1. Change of Specification

The following changes were made on the machine R2.

a. State 3 is an internal state, R2 could transit to other state by checking the predicate

condition delay < reset or delay = reset.
b. In R2, the initialization would be made in ack transition (i.e. transition from state 0 to

state 1).
c. Enqueue(R_CHAN, Conn_ack) was implemented by directly sending the packet over

the R_CHAN rather than queuing it to the R_CHAN before sending.
9




Transition Predicate Action
T_CHAN[front].type = Conn_Req = Dequeue(T_CHAN);
Conn_Req Evaluate(Conn_Req);
SendPkt(Conn_Ack) over R_CHAN;
ReqestTimerSrv(IPT);
1 v Initialization();
clock_tick * inc(delay);
Empty(T_CHAN)
delay < reset SendPkt(Conn_Ack) over R_CHAN
timeout delay = reset CancelTimerSrv();
start T_CHAN[front].type = if (packet type = Conn_Conf) then
Conn_Conf v Conn_Conf = Dequeue(T, _CHAN);
T_stateFlag=TvV Retrieve negotiated parameters;
T_CHAN(front].type = Data CancelTimerSrv();
R_active =T,
lost_ack T_CHANIfront].type = Dequeue(T_CHAN);
Conn_Regq SendPkt(Conn_Ack) over R_CHAN;
finish Disconnect =T v R_active =F
Conn_discFlag=T
update T_stateFlag=T * high = T_state.seq
T_state.seq > high
discard T_CHAN]front].type = Dequeue(T_CHAN);
Conn_Conf v
T_CHAN[front].type =
Conn_Req

Table 2.2 - R2 Predicate-Action Table

d. A periodic timer signal for state 1 was requested in the ack transition.

e. In start transition, the retrieval of negotiated parameters is performed if the packet type
is Conn_conf.

f. T state packets were implemented as out-of-band packets (i.e. they will not be queued
in T_CHAN). The checking of predicate condition T_CHAN/front] = T_state was changed to
T stateFlag = T. Similar discussions applied for the change of predicate condition
T_CHAN([front] = Conn_disc to Conn_discFlag = T. See Chapter III section A.S5.c for more

details about out-of-band packets.
g. In start transition, the periodic timer signal service would be canceled before transit to

state 2.

10




D. MACHINE R3

R3 transmits the receiver control packets periodically to the transmitter through R_CHAN,
and initiates an abnormal connection termination if no transmitter control packets are received for
a predetermined amount of time. The only difference from the Predicate-Action Table of T3 is
the use of the variables R_active and received instead of T active and sent for the same purpose
[Ref. 1]. The modified State Diagram is depicted in Figure 2.5. The modified Predicate-Action
Table is in Table 2.3.

finish

confirm

“.no_data.”"
3 € 2
BN

/”?eo ldata
%

| ( : )disc 4 no_disc

Figure 2.5 - R3 State Diagram

1. Change of Specification
The following changes were made on the machine R3.
a. In start transition, the initialization and request for timer service were made.

b. States 2, 3 and 4 were internal states.
c. The timeout transition predicate count = k " scount = Lim should be corrected as count

= k v scount = Lim since the timeout should occur when either there is no data packet been
received for count implied time period or there is no T _state control packet been received for

scount implied time period .

11



E.

the host and notifying the host of any errors which occur during the reception of the data packets
[Ref. 1]. The modified State Diagram is depicted in Figure 2.6. The modified Predicate-Action

Transition Predicate Action

start R_active=T Initialization();
ReqTimerSrv(Tin),

clock clock_tick # R_active =T |inc(scount);

I?o_data received = F inc(count);

delay count < k * scount < Lim null

timeout count = k v scount = Lim SendPkt(R_state) over R_CHAN;
k = min(2*k, klim);

data received=T SendPkt(R_state) over R_CHAN;
k=1;

no_disc scount < Lim received = F;
count = 0;

disc scount = Lim Disconnect = T;
CancelTimerSrv();

confirm R_active = F; null

finish R_active=F CancelTimerSrv();

Table 2.3 - R3 Predicate-Action Table

d. The timer service would be canceled in both disc and finish transition.

MACHINE R4
Machine R4 provides the interface to the receiving host by passing the data in INBUF to

Table is in Table 2.4.

1. Change of Specification

a. The start transition predicate was changed to R_active = T " (mode = 1 v mode = 2)

since R4 only interested in these two modes.

accept transition predicate since the check has been made in start transition as mentioned in a.

The following changes were made to the specification of machine R4.

b. An initialization action was made in the start transition.

¢. R4 will inform host about the connection during star? transition.

d. R4 will inform host about the completion‘ during finish transition.

e. The checking for mode = 1 v mode = 2 predicate condition has been removed from

f. States 2 and 3 were internal states.

12




Figure 2.6 - R4 State Diagram
M
l Transition Predicate Action
start R_active=T* Initialization();
(mode = 1 v mode = 2) NotifyHostOfConnection(mode),
finish R_active=F * NotifyHostOfCompletion();
Empty(INBUF) *
Disconnect = F
disc Disconnect =T NotifyHostOfDisconnect();
accept Disconnect = F # null
not (Empty(INBUF)) #
signal from host
no_err mode = 1 null
wait WaitBulk(INBUF, null
RECEIVE)=T
retrieve WaitBulk(INBUF, Retrieve_mode1();
RECEIVE) =F
||err_chk mode = 2 Retrieve_mode2();

Table 2.4 - R4 Predicate-Action Table

13
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II1. IMPLEMENTATION OF THE SNR RECEIVER

A. GENERAL

The implementation of the SNR protocol was divided into two parts t0 be able to fit into a
thesis work. By the nature of the SNR protocol, it was divided into the transmitter part and the
receiver part (referred to as Transmitter and Receiver in the following text). The Transmitter was
implemented by Farah Mezhoud under the advisory of Professor Lundy. The paper of the
implementation of the Transmitter would be referred to as [Ref. 2] in this paper.

The Receiver was implemented to work as a daemon running in the background on the
UNIX system. It was implemented using C programming language. Each machine mentioned in
the specification was implemented as a process. A shared memory space was allocated for the
purposes of interchanging and sharing information among processes. To avoid racing of the same
data structure in the shared memory, semaphores were used for access control. Each process
would pause (put into a wait state by the operating system) for an event to occur. This avoided
busy-waiting for some variables to change. When an event occurred in a process, it would notify
the processes waiting for this event by using signal system calls. The general schematic diagram

for the Receiver is shown in Figure 3.1.
In the schematic diagram, the circle stands for a process, the sink shaped line stands for a

variable pool, in this case, the shared memory. The arrow headed lines stand for the accessibility
of the processes to the pool. The arrow pointed to the pool stands for the write accessibility, and
the arrow pointed from the pool means read accessibility. In this schematic, SNR_R has the write
accessibility to the shared memory and the SNR_R1 has both read and write accessibility to the
shared memory. o

1. Processes

There are six processes in the SNR receiver. The Receiver root (SNR_R) forks all the
working processes in the Receiver. Each process once forked will perform an initialization, then
goes to state 0. The SNR_TC receives a packet from the socket, enqueue the packet to the
T CHAN, then notifies the relevant process according to the packet type.

15




IP packets
PROTO# = PROTO_SNR

SOCK_RAW
Socket

—wl

Shared Memory

Figure 3.1 - SNR Transport Protocol Receiver System Schematic Diagram.

2. Sockets

To avoid using the TCP transport layer that has been provided by the UNIX system, the
SOCK_RAW option should be used when creating a socket to establish an IP layer
communication. This option requires the process that creates the SOCK_RAW socket has a root
privilege. This was done by creating and assigning the executable file snr_r* with root
privilege! by the system administrator. The socket descriptor of the created socket would be
stored in the shared memory and can be used by other child processes’ without the need for root
privilege.

The eight bit protocol number field in IP header used to identify the SNR transport
protocol should be specified when creating a SOCK_RAW socket. This number must be
different from numbers that already in use by other protocols (e.g. TCP, UDP, ICMP etc.). The

protocol number being used for SNR in this implementation was 191. Choice was made by the

author of [Ref. 2].

! It should be noted that the executable files should only be overwritten to the privileged files by the
compiler in order to retain the root privilege vice a normal copying or renaming UNIX command.

2 The socket descriptor returned by a socket system call is similar to a file descriptor in the UNIX system
[Ref. 4 pp. 269]. This socket descriptor could only be used by the process that created the socket or its child
processes that were forked after the creation of the socket [After Ref. 4 pp. 56).

16




3. Signals

There are two user signals, SIGUSR1 and SIGUSR?2, available in the UNIX system. In
the Receiver implementaﬁon, SIGUSRI1 was chosen to commit all the signaling from processes
to processes. A process issues sighold system call to hold the signal from interrupting before
start processing the signal it received and then issues sigrelse to release the interruption of the
signal. The sigpause system call incorporates the release of interruption and pause for the signal
in one call. When timer signal was requested for some processes (i.e. machine R2 and R3), the
signal SIGALRM was sent by the system clock to the process that requested the service. For
each signal that could be received by the process, a signal handler should be provided. If no
signal handler was provided, the process would be terminated when receiving the signal.

The signal system calls in the UNIX systems that we used for the implementation were
not very reliable. Signals could be lost when a process has issued a sighold system call and has
not release the hold while more than one signal arrived. The system does not maintain a signal
queue for each process. The following functions were defined to try to save all signals from

being lost.
- Signal handler - increments a file scope variable EventCnt whenever a signal is received

by the process.

void SigHdIr() {
EventCnt++;

}

- Function WaitForEvent - waits only when the EventCnt is less than or equal to zero.

[After Ref. 4 pp. 53]

void WaitForEvent(){
sighold(SIGUSR1); /* inhibits the interrupt from SIGUSR1 */

if (EventCnt <= 0)
sigpause(SIGUSR1); /* enable the interrupt then pause for SIGUSR1 */

else
sigrelse(SIGUSR1),  /* enable the interrupt from SIGUSR1 */

EventCnt--;

}

- System Call sigset - sets up the signal handler for the signal interested
sigset(SIGUSR1, (void (*)()SigHdlr);
These functions improved the stability of the program by reducing the signal hold time to

the minimum (only one check for the EventCnt is performed within the inhibited area). But more

17




than one signal could still possibly arrive at the process when it inhibits the interruption of the
signal (especially when the process is being scheduled to a wait state by the operating system).
Some modifications of the original specification was made for the signal lost problem (see

Chapter II section B.1 for the change of specification for R1).

4. Shared Memory / Semaphores

The shared memory was used in this implementation for the following reasons:

- Save time for conveying information from machine to machine. e.g. 7_CHAN, INBUF
etc.

- Sharing common variables among machines. e.g. mode, LWr, UWr etc.

« Control variable that starts and terminates of all machines. e.g. SNR_ON.

In order to prevent the race condition from occurring among processes that share the
same data structure in the shared memory, semaphores were used. Table 3.1 illustrates the
semaphores and the processes that access to data structures in the shared memory that were
controlled by semaphores. In this implementation, all semaphores were created to have a count as

1. That means each resource controlled by a semaphore could only be accessed by one process at

a time.
Semaphore R/W Controlled shared memory data structures

INBUFsem R1, R4 W |INBUF, head, RECEIVE, AREC, LOB, LWr, UWr
R4 R

SCOUNTsem | R2,R3 W iscount
R3 R

T_CHANsem | T_CHAN | W |T_CHAN, T_statePkt, T_stateFlag, Conn_discFlag

‘ R1,R2 | R

RCVDsem R1,R3 W |received

R3 R

Table 3.1 - Semaphore / Process Access Control Table

The decision of whether to use a semaphore or not on certain shared memory variables

were made according to the following rules:
a. The variable could be written by more than one process; or

b. The variable is a compound data structure (e.g. arrays, records etc.) that may cause

inconsistency in the reading process if the process could not exclude other processes from
writing while in the middle of a read. ’
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In this implementation, a rule has been observed that one process should wait on one
semaphore (i.e. lock one resource) at a time to prevent deadlocks. A survey through each
process in the Receiver showed that in some processes (€.g. R1, R2) there were needs for locking
two (and at most two) shared resources at a time. Fortunately, there were always T_CHAN
involved. So the second rule been used that when a process needs to lock two resources, one of
the semaphores should be 7_CHANsem, and the process should always wait on T_CHANsem
first before it waits on the other semaphore. Thus the two resources would virtually be
controlled by one T. " CHANsem. An example of twolprocesses each wait on two semaphores at a

time is given in Table 3.2.

SNR_R2
, sem_wait(I CHANsem); sem_wait(I” CHANsem);
sem_wa it(INB UF'sem), sem_wait(SCi 0 UNTsem),
sem_signal(]NB UF'sem); sem__signal(SCOUNT sem);

sem_signal(7’ ._CHANsem); sem_signal(7’ ;CHANsem);

Table 3.2 - Example of Processes Each Wait On Two Semaphores At a Time
- In our UNIX system, the maximum shared memory size allowed was 1 mega bytes. This
was defined in system header file <sys/shm.h> by macro definition

#define SHMSIZE 1024 /* maximum shared memory segment size (in Kbytes) */

The shared memory size might need to be increased for a further implementation of the
SNR protocol that could handle more than one connection at a time.

The base value for shared memory used when creating the shared memory for the
Receiver was chosen to be 8890 [After Ref. 4 pp. 157]. This value should be unique among all
applications that require shared memory within the same workstation. If two or more processes
on the same machine created their own shared memory using the same base value, the result
would be unpredictable. Inexplicable phenomena occurred during the test of shared memory,

but was eliminated after different base values were chosen for the Transmitter and Receiver.
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The uniqueness of shared memory base value between the Receiver and the Transmitter is

guaranteed in the implementations.

5. Scheduling / Processes synchronization

The parallel processing feature of the SNR protocol was implemented by employing the
UNIX system multitasking ability. Some problems that were caused by the nature of parallel
processing were encountered during the implementation.

a. Race condition between R1 and R4. In the original specification, a race condition
exists between R1 and R4 when R_active = F. Normally, when R1 detected R_active = F, if the
T CHAN is empty, it would transit to state 0 otherwise it would process the data packets in
T CHAN and put them in JNBUF until T_CHAN is empty then transit to state 0. On the other
hand, when R4 detected R_active = F, if INBUF is empty it would transit to state 0 otherwise it
would process the INBUF until the INBUF is empty then transit to state 0. In mode 2, the race
condition would not occur since the Transmitter should not send Conn_disc until all blocks are
acknowledged. However, in mode 1 the Transmitter does not need to wait for blocks to be
acknowledged before sending Comn_disc. So when R2 receives Conn_disc packet and set
R_active to False there might be some data packets still have not processed in T_CHAN by R1.
If R4 detected that the R_active = F first before R1 (by the scheduling of a parallel processing
system) and checks the JNBUF that it was empty then R4 would consider that the connection is
completed and transit to state 0. This causes loss of the data packets in T CHAN. In order to
make sure R1 completes its processing of 7 CHAN data packets and set up the INBUF before R4
considered that the INBUF is empty, the SNR_TC when received Conn_disc packet would
notify R1, and R1 will notify R2 when all data packets in the 7 CHAN has been processed’. A
timing diagram illustrates the occurrence of the race condition in Figure 3.2.

b. Conn_disc missed by R2. In the specification, R2 should check 7 CHAN[front] to see
if the packet type Conn_disc is received and do the appropriate processing. In the testing of the
early implementation, when R2 receives the notification from SNR_TC about the arrival of
Conn_disc, the front of T _CHAN is occupied by Data packet. The problem could also be solved
by having SNR_TC notify R1 about the arrival of Conn_disc and let R1 notify R2 when R1 has
processed all data packets in the 7 CHAN.

3 This modification was not intended to solve the late arriving data packets that come after Conn_disc due
to the network routing. This kind of loss is not guaranteed by mode 1 in the SNR protocol specification.
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|SNR_Tc| ‘SNR_R1 ] ISNR_R4] ‘ SNR_Rzl

Date packet received

ProcTchanPkts()

i received = T
\

Date packet received
INBUF not empty
Conn_disc packet,
received RetrieveMode1()

\ :L INBUF empty
\;

/ R__active =F
Case 1: OK
R1 scheduled first,
ProcTchanPkts() T_CHAN data packets
¢ were processed and
received=T put in INBUF then
transit to state O.
STATE=0
INBUF not émpty | 14 checks INBUF not
] empty, retrieves data
RetrieveMode1() pass to host then
i transit to state 0.
INBUF empty
STATE=0

Case 2: Lost data

INBUF e_mpty R4 scheduled first,
STATE=0 checks INBUF empty,
transit to state O.
ProcTchanPkts()
i received=T
STATE=0 INBUF not empty Data in INBUF here were
too late to be retrieved by
R4 hence lost.

Figure 3.2 - Timing Diagram of Race Condition Between R1 and R4
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c. T_state missed by R2. A similar problem exists for T_state packets that would be
interleaved with data packets in the T_CHAN. The remedy of this problem was to treat the
T state type packets as out-of-band packets. In the shared memory, one.space was allocated for
T state packet. The SNR_TC would refresh this packet whenever a T _state packet is received
from the Transmitter. A T stateFlag in the shared memory would be set by SNR_TC to indicate
that the T _state packet has been refreshed”.

d. Child processes are scheduled less frequently than parent process. Originally, in order
to categorize functions into separate modules, a timer process was implemented to handle the
timer service. Whenever a process needs periodic signals from a timer, it forks a timer process
to do the job. It was found that the timer process has a very low priority that it rarely be
scheduled to perform its task. That made the timer signal used by R3 for state information
exchange not very smoothly and hence the Transmitter has to be tuned loosely to avoid frequent
timeout disconnection. Once noticed of this, a design decision were made to transplant codes in
the timer process into the client processes and the problem was eliminated.

6. Data Alignment
There were problems related to the C compiler. When we define some large data

structures (e.g. array, struct etc.), if a structure is not started at an address of a multiple of four
(possibly related to the size of a machine word), the compiler would padded memory spaces
before the data structure with zero to make it so. This problem caused miss alignment of field
accessing in the structure by the machines on the other side. So far, the data structures that
encountered this problem in our implementation were SNRhdr_t and SNRrstate_t.

In the SNRhdr_t, originally we added the datalen field as an unsigned short integer (two
bytes in size), that made the total length of the header six bytes. Thus when the data part
(defined as array of unsigned characters) of the packet were appended to the header to form a
complete packet, two bytes of zero were padded to the end of the header by the compiler. This
meant the Receiver could not retrieve data correctly. To overcome this problem, the data type
for datalen field was changed to integer (four bytes in size). That made the total length of the
header eight bytes and the starting address of the data following the header was a multiple of

four and no dummy bytes were padded.

4 A check on the sequence number should still be made by R2 to see if the refreshed T_state packet is
newer than the previous T _state in accordance with the specification.
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Similarly, the SNRrstate_t has an LOB followed by an integer errChk (the error checking
word). Originally, the LOB has a size of ten. There were two dummy bytes added to the end of
the LOB by the compiler to make the errChk starts at an address of multiple of four. The miss
alignment problem happened again during test, with the experience of the data packet, we

decided to change the LOB size to eight. That made the errChk start at an address which was a

multiple of four and solved the problem’.

B. RECEIVER

The SNR protocol Receiver was implemented by using six processes. They are SNR_R,

SNR_R1, SNR_R2, SNR_R3, SNR_R4 and SNR_TC. The program structures are described in

the following section.

1. Receiver Root (SNR_R)

The SNR_R is the Receiver root process of all the other machines. The SNR_R is also
the only process that requires the root privilege to create the SOCK_RAW socket. When
executed by the system administrator, the SNR_R creates shared memories, semaphores, sockets
and initializes shared memory data structures (e.g. T_CHAN), then it sets the shared memory
variable SNR_ON to True and activates all the receiver machines (SNR_R1 through SNR_R4)
and the transmitier channel (SNR_TC). Once all these been done, the individual Receiver
machines are started to work on their own. The SNR_R then waits for the command from
system administrator to terminate the Receiver. The SNR_R, when terminated by the system
administrator, sets the SNR_ON to False then informs each machine and waits for them to
terminate. After all machines are terminated, SNR_R removes the shared memory and closes all
semaphores created in the process.

2. Receiver Machines (SNR_R1, SNR_R2, SNR_R3 and SNR_R4)

All four Receiver machines were designed using the same program structure. Take
SNR_RI as an example. The SNR_R1 when activated, first gets the shared memory id using the
same key (i.e. SHMKEY) that SNR_R used to create the shared memory, attaches to the shared
memory by a pointer Shm, then opens the semaphores INBUFsem, RCVDsem and T_CHANsem
that was created by SNR_R and going to be used in'this.pro“cess. The SNR_R1 then sets up the

s Making the LOB size multiple of four is not really a good way of solving the problem since there is a
restriction on LOB size. Another way of solving this problem could be changing the errChk type from integer to
four consecutive unsigned characters and cast them to integer when being used. This way, the restriction on LOB
size would be relaxed.
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signal handler for the signal SIGUSRI that was designated as the signal for the Receiver process
communication. When these are done, the SNR_RI falls inside a while 100p that is controlled
by the shared memory variable SNR_ON. Whenever the SNR_ON = T, the SNR_R1 keeps on
waiting for event (in this implementation, pause for the SIGUSRI signal) to occur and process
the event according to the state that SNR_R1 is in. When SNR_ON = F (i.e. the Receiver is
terminated by the system administrator), SNR_R1 exits the while loop, detaches the shared
memory, closes all the semaphores and then exits.

3. Transmitter Channel (SNR_TC)

The SNR_TC has some differences in the program structure from the four Receiver
machines. The SNR_TC, when activated, would get and attach the shared memory, open
semaphore and set up the signal handler in the same way as the four Receiver machines do.
Then the SNR_TC falls inside the while 100p that is controlled by SNR_ON, however, instead of
waiting for events to occur, the SNR_TC waits on T_CHAN for the IP packets that were packed
and sent by the Transmitter to arrive. When an IP packet is received in the SNR_TC, it peels off
the IP header and extracts the SNR packet from the IP packet. Check sum is also performed
during the extraction of the packet. Then, depends on the SNR packet type, the SNR_TC
enqueues this packet and notifies the relevant machine to process the packet. The termination of

this process is the same as all the other four Receiver machines.
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IV. TESTING AND TUNING

The SNR protocol Receiver implementation was incorporated with the Transmitter and
tested using three UNIX workstations. These three workstations were connected next to each

other using FDDI. The testing environment is shown in Figure 4.1.

GOLD
(SOLARIS)

BLACK

(IRIX)

WHITE
(SOLARIS)

NETWORK
ANALYZER
Figure 4.1 - Testing Environment for SNR Protocol Implementation
Three workstations, namely WHITE, GOLD and BLACK, run UNIX operating system in

two different versions. The WHITE and GOLD run SOLARIS while BLACK runs IRIX. Not

too many implementation differences were found between these two systems’. A network

analyzer was connected to the network for debugging and testing. The analyzer shows
information of the IP packets that were put onto the network for communication by any machine
in the network. From the analyzer, we could read the information of each field in the SNR
packets by counting the byte position in the IP packets. In addition, the protocol number, source
and destination of packet could be specified to filter out uninterested packets for the analyzer

display. It was very helpful to have an analyzer for the testing of this implementation.

¢ See snr_env.h file in Appendix for more information.
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A, GENERAL

When testing, the Receiver should be invoked first from one workstation. Once the
Receiver is started, it will receive and process any IP packet that has its protocol number set to
191 (macro defined as PROTO_SNR in snr_tr.h header file). Then from another workstation, the
Transmitter is invoked, it immediately starts the establishing of connection and transmission of
packets to the specified host’. A group accessible file® called README was stored in a directory
that can be accessed by the Transmitter for testing. In order to keep track of the current status of
each process during the test, extra codes were added to the program to print out some important
messages to the screen.

B. USING DIFFERENT MODES FOR CONNECTIONS

Three modes as mentioned in the specification were tested. In mode 0, there is no flow
control and error checking (i.e. retransmission). In mode 1, only flow control is adopted. In
mode 2, there are both flow control and error checking. In the testing, the LWr and LOB
information would be printed out on the screen when the R_state control packets were received
on the Transmitter side. If a retransmission occurs, the retransmission information would be
printed out to the screen as well. When the connection is completed, the Receiver would print
out all the data that has been received for verification. It appeared consistently in the test that
mode 0 was the fastést mode among all modes. The modes 0 and 1 have very low error rates. It
was estimated that over ninety percent these two modes could get all data correctly transferred.

Mode 2 showed its power by a hundred percent correct rate but with a disadvantage of lower
performance.
C. LOST PACKETS

To simulate the packet lost in a natural way, in the Receiver SNR_TC process, a piece of

code were added to deliberately skip one packet with a chosen sequence number for once.
In mode 0, this test could be used to check whether the loss really occurred. In mode 1,
this test shows how the flow control could be affected by the lost packet. During the test in

! In the specification, no port number could be specified for a connection thus connection could only be
established from host to host. Also note that the port number could be added to the SNR packet header for entity
(applications such as FTP, e-mail, rlogin etc.) to entity connection in further extension of this implementation.

8 The file that is transferred by this protocol would only need to be accessed by the Transmitter side.
However, it would be convenient during testing to have the designer of the Transmitter as well as the designer of
the Receiver (in the same user group) to be able to change the file in order to test different sized files individually.
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mode 1, the LWr (lower window in Receiver) would be stuck by the lost packet and later be
released when the number of packets received after the lost packet exceeded the wait_lim. In

mode 2, this test caused retransmission of one whole block of packets.

D. DUPLICATE PACKETS

Codes were added to the SNR_R1 to print out messagés when a duplicate packet was
received by the Receiver. By tight adjustment on some retransmission parameters (that could
cause some unnecessary retransmissions) on the Transmitter side, duplicate packets were
generated. This test is mainly conducted in mode 2 since no other mode does retransmission. It
appeared that in the test, all duplicate packets were detected and discarded by the Receiver. No

duplicate packet test was conducted for mode 1 since it uses the same predicate condition as

mode 2 does for duplicate packet checking.
E. LARGE DATA TRANSFER

This test is mainly testing the buffer wrapping around ability. In this implementation, the
Receiver INBUF and the related data structures (i.e. RECEIVE, AREC) could accommodate
1024 packets. We tested this by sending a file big enough to have these data structures be
exhausted and wrapped around for reuse. Due to the fact that in this implementation, the block
number field was implemented using unsigned character (1 byte), thus the maximum block
number could be 255. In other words, the maximum number of packets that could be transferred
in one connection would be 255 * maximum block size. The maximum block size is limited by
the packet number field that was implemented using unsigned character as well. However, the
choosing of block size is not that flexible since it would be related to the number of packets to be
transmitted in a retransmission. In our test, a block size of 8 was the most often been used since
it requires less packets be transmitted in a retransmission. This made the maximum number of
packets that can be transmitted in one connection 2040 packets. However, the block size and
packet size could be determined at runtime during connection establishment by negotiation of
parameters. Thus, if an application needs to transmit a large file, it should use larger block size
and larger packet size for the connection. In this implementation, the largest file that can be

transferred in one connection’ is

° The limitation only applies to mode 1 and mode 2 since these two modes call OrderInsert that requires
block number and packet number information. In mode 0, the block number and packet number are irrelevant,
thus the restriction of these two factors are not applied. Hence, theoretically, mode 0 could keep on transferring
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maximum block number * maximum packet number * maximum packet data length™
=255 * 255 * (128 - 8 - 4) = 7,542,900 bytes.
F. TRANSFERRING DATA FROM SAME WORKSTATION

This test checks if the implementation could transfer data in one machine from one shell
to another shell by running the Receiver on one shell and invoking the Transmitter on another
shell and specify the same host name as the transferring destination. With a little lower
performance due to the increased load of the system, the test was conducted successfully. By the
use of the network analyzer, we observed that the IP protocol was intelligent enough to recognize

a packet being sent to a process in the same machine, and thus to simply pass it directly to the

process and not to put it on the network.

G. TUNINGS

The goals of tuning for this implementation were as follows:

1. To Ensure .thé Comiécﬁon Could be Eétablished As Long As the Receiver is

Activated And the Network is Working

During the connection establishment phase, the Receiver requests a timer then waits for
the Transmitter to send Conn_conf packet. If the timeout occurs before the Conn_conf packet is
received, the connection would not be established. To ensure the time out would not occur if the
network is working, we need a longer period for the timeout to occur in the Receiver.

The parameters in the Receiver side related to this issue is InitIPT and TOtick.

TOrtick is the number of times that Tin time interval expired. This value incorporated
with InitIPT decided the Receiver time out during a connection establishment. The larger these
values are, the more likely the connection could be established. However, the trade off is the
amount of time the Receiver should wait to initiate a timeout disconnection when there is a
problem on the network or the Transmitter. In our test, with a TOfick of 32 and InitIPT of 100

ms, the Receiver never timed out during the connection establishment.

packets in one connection as long as the timeout in R3 does not occur. (see Chapter II for change of specification

for R1 about the discussion to extend the timeout in R3 in mode 0)
10 In this implementation, the maximum SNR packet length is 128, packet header length is 8 and ErrChk

word size is 4. Thus the maximum SNR packet data length is 116.
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2. To Minimize the Unnecessary Retransmissions

A retransmission would .occur when the Transmitter does not receive R_state control
packets that carry information for update in time. There were two possibilities that may cause an
unnecessary retransmission. Firstly, the R_state packets were sent not frequently enough that the
Transmitter could get the update information in time. Secondly, the Transmitter sets a stringent
condition for retransmission.

The parameters in the Receiver side related to this issue are Tin, kou and IPT. The Tin
- was decided by the following formula at runtime.

Tin = max(RTD/kou, IPT)

Since the RTD should be decided at runtime, the other factors that could affect the result
of Tin would be kou and the IPT. To minimize the unnecessary retransmissions, we need to
have the Tin as small as possible. So we need a large kou and a small IPT. However, the trade
off for a small Tin is that more control packets were sent to the Transmitter.

In our test, normally the retransmission seldom occurs if there is no packet lost.
However it occurred more often when there were many processes running on the testing
workstations (e.g. other users rlogin, more shells were created etc.) since the machines for the
protocol were less often being scheduled whereas the timers were not affected too much by the
processes load. This brought up an issue that the protocol might need to consider about the load
of the host by monitoring the load of the system and putting a load parameter in the parameter
negotiation or in the control packets and use the load parameter to affect the condition for
retransmission.

3. To Have R _state Control Packets Being Sent In A Sufficient Manner

More control packets mean more load on the machines and the networks. So we need to
tune the sending of control packets so that the Transmitter could detect the loss of a packet and
retransmit it early enough before the Transmitter be blocked by the flow control (due to the lack
of refreshing R_state information) from transmittihg new data packets.

The parameters in the Receiver side related to this issue are Tin, kou, IPT and Klim. For
Tin, same discussion was provided in section 2. The Klim determines the limit of the k value

that would be used to decide number of Zin's when a data has not been received in the Receiver
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before transmitting an R_state packet. The larger the Klim is, the less frequent the R_state
control packet would be transmitted when there is no data packet been received by the Receiver.

In our test, the R_state packets were sent with the LWr jumps approximately every four
blocks (i.e. each Tin time interval, four blocks were received by the Receiver). A retransmission
would occur when the fourth R_state control packet was received by the Transmitter after a
packet lost. The LWr jﬁmps approximately sixteen blocks after the Receiver receives the

retransmission data packets.
4. To Have Timeout Disconnection Initiated Only When Problem Really Occurred

On the Connection

The Receiver would timeout disconnect when R3 does not receive T_state for Lim
implied time period. Thus the adjustment of Lim incorporated with Tin would decide the
disconnection timeout. In our test, the timeout disconnection never occurs when no error occurs
in a connection.

The final tuning parameter values are provided in Table 4.1. All the test results mentioned
in this Chapter are based on these parameters. These parameters were obtained by testing under
the packet data length of 8, block size of 8, window size of 64 and an estimated average RTD of
100 ms.

Due to the fact that the protocol was implemented and tested only under the simple
environment as mentioned above and not sufficient samples were gathered, the tuning parameters
provided here are immature. This Chapter gives an idea that how a test and tuning could be

conducted for this implementation.
Value

Remarks
2{power of 2 constant, used by R2 to decide /PT.

32|time out ticks for reset, used by R2.
100,000 {initial /PT, in microsecond, used by R3.
AcceptableRatio 3/4|acceptable ratio, used in R4 mode 1 to determine wait_lim
32| scount limit, used by R3 for disconnect timeout.
32|count limit, used by R3 for send R_state timeout.

Parameter name

Table 4.1 - Receiver Tuning Parameters

30




V. EVALUATION

This implementation complies the SNR protocol specification [Ref. 1]. Some differences
exist due to various reasons described in Chapter II. Extra efforts in almost every way were put

on program documentation and maintainability for the possible extension of this implementation in

the future.
A. MAINTAINABILITY

1. Relationship Between Variables

In snr_tr.h file, all related constants were defined using formulae to depict their
relationships. For example, to allocate a larger INBUF for the implementation, only one
constant MaxBufSize need to be changed. By changing the constant MaxBufSize, the constants
that related to it (e.g. RCVsize, ARECsize etc.) would be changed automatically by the
relationship formulae. This saves the time for a programmer to understand and compute these
values manually and hence reduces the possibility of making mistakes.

2. Implementation Limitations

All the limitations that were adopted were collected in snr_tr.h file.

a. MaxLci = 1. The MaxLci is the maximum allowed logical connection identifier (LCI).
In this implementation, only one logical connection is allowed. The usage of the constant
MaxLci is not strictly enforced in this implementation."! However, the inclusion of this constant
in this implementation points out a diréction toward thé future multiple LCI implementation.

b. MaxPktSize = 128. This constant specifies the maximum packet size that could be
used for the SNR packet. This number also implies the maximum data length that could be used
in each packet by the formula SNRdataLen = MaxPktSize - SNRhdrLen - ErrChkSize. Since this
constant affects the storage space of the major data structures (e.g. SNRpkt_t, INBUF, T CHAN
etc.) in this implementation, the consideration of the value for this constant would be the

limitation of the shared memory size that can be allocated for the Receiver.

n One possible multiple LCI implementation could be that all the data structures that would be used for a
connection be declared as an array of size MaxLci and indexed by the LCI for that logical connection (€.g.
STATE[MaxLci], LOB[MaxLci][LOBsize] etc.). These kind of declarations or accessing of variables do not
appear in this implementation. :
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c. MaxWinSize = 64. This constant specifies the maximum window size allowed for the
communication protocol. It is used for determining the LOBsize that would be used in R_state
and T state control packets to be put onto the network periodically during a connection.
However, the size of LOB should not be a main factor for the consideration of MaxWinSize
constant since the LOB size is affected in bit (i.e. one block in the window would be indicated by
one bit in the LOB) by the constant. More specifically, this constant should be considered just as
its role in the flow control and trying to gain efficient use of the network resource (e.g. the high
speed communication media etc.) vice storage space saving or negligible load on the network.
Note that since the declaration of LOB in this implementation is array of unsigned characters

(bytes), the value chosen for this constant should be a multiple of 8.
d. MaxBufSize = 1024. This constant is the size of INBUF and T CHAN thus the

consideration for this constant should be a storage space issue. Note that this constant would
also be used for determining the size of RECEIVE that is used in bit and declared as array of

unsigned characters so the value for this constant should also be a multiple of 8.

3. Tuning Parameters

All constants that related to the tuning of this protocol were gathered in snr_r.h file for

convenience. These parameters include kou, TOtick, Klim, Lim, InitlPT and AcceptableRatio.
Refer to Chapter IV for the usage of these parameters.

4. Functions for Application Program Interface (API)

Due to the fact that the API for the SNR protocol has not been designed, all the

operations related to the communication with the host in this implementation were implemented
as functions with meaningful function names. In these functions, messages were printed out to
simulate the operation. The possible ways of using the data structures of this implementation in
an application interface were instanced by some of these functions (e.g. PutOutBuf, ShowOutBuf
etc.) as well. The files that have functions or operations in the implementation that related to the
API were described as follows:

a. snr_r.c - the Receiver Root Process

In this implementation, for the system administrator to control the termination of

this protocol, input on the console terminal through keyboard was checked in the Receiver root
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process. This could be changed in the design of an interface between the system administrator (or
a system initialization program) and this protocol.

The implementation limitation constants MaxPktSize, MaxBufSize, MaxLci and
MaxWinSize could be determined by the system administrator with the concern of the size of
shared memory and the load of the system when invoking the Receiver (rather than hard coded in
the program requiring compilation after each change) in the interface design.

b. snr_rl.c - the Machine R1

The following functions are the API related functions for machine R1.

« PassDataToHost - Passes the data obtained from a data packet to the host.

« PutOutBuf - Puts data in the OUTBUF. This function gives an example for APL

« ShowOutBuf - Displays the OUTBUF to the screen. This function gives an
example for APL

c. snr_rd.c - the Machine R4

The following functions are the API related functions for machine R4.

- NotifyHostAboutConn - Notifies the host about the connection is established
using a specified mode.

- NotifyHostAboutDisc - Notifies the host about the connection is disconnected.

- NotifyHostAboutCompletion - Notifies the host about the connection is

completed.
« PassDataToHost, PutOutBuf and ShowQutBuf - Refer to section A.4.b.

5. Portability

In this implementation, all the differences related to different versions of UNIX system
(so far, SOLARIS and IRIX) were gathered in the header file snr_env.h and were covered up by
macro definitions. It is possible that when trying to port this implementation to other systems
more differences will be found and put into this file. By putting all these differences in the
header file, one avoids the conditional compilation directives in the programs, makes the

programs easier to read and system independent.
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B. DAEMON PROCESS

Efforts were spent to implement the Receiver as a daemon process. The first step being
made is to have the Receiver serve for different connections repeatedly without the intervention of
a person. The Receiver could continuously handle different modes and connection parameters
(e.g. packet size, block size etc.) that were specified on the Transmitter side when invoked for
different connections

Although most of the characteristics of a typical system daemons' could be found in the
Receiver implementation, it is still far from a real daemon process because it is not disassociated
with the control terminal (thus it will tie up the terminal while it is executing), and it cannot be
started and terminated by the system init process etc. as described in [Ref. 4].

C. EVENT DRIVEN

In this implementation, processes are basically idle (pausing for signal) when no event
occurs. This saves CPU time that could be used for other processes running on the same
machine. Events that are generated by the processes of this implementation are referred to as
internal events in this paper. Events that are generated by the Transmitter, system administrator
or other processes which are not part of the Receiver implementation are called external events.
The external events are considered more natural than the internal events since the generation of
the external events are not that "artificial "

In this implementation, an external event occurs when a packet is received by the

SNR_TC process through T_CHAN. This causes an internal event and signal to be sent to the

1 In [Ref. 4] pp. 73, the characteristics of a typical system dacmon were specified as following:
« They are started once, when the system is initialized.
« Their "lifetime" is the entire time that the system is operation; usually they do not die and get restarted

later.
- They spend most of their time waiting for some event to occur at which time they perform their service.

« They frequently spawn other processes (0 handle service requests.
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relevant process that is responsible for this packet type by the SNR_TC process. In this
implementation, internal events never occur spontaneously. It is always the byproduct of an

external event. Table 5.1 summarizes the internal events in this implementation.

Internal Generated Relevant Processes

Events Prolgess SNR_R1 SNR=52 SN@ S@iR4 SNR=TC
Conn_req received | SNR_TC - .
Conn_conf received | SNR_TC .
Data received SNR_TC o o
T_state received SNR_TC ]
Conn_disc received | SNR_TC o?
R_active=T SNR_R2 . . 4
R_active=F SNR_R2 . A o
Disconnect=T SNR_R3 . .
received=T SNR_R1 ‘ °
time tick - SYSTEM?® . .
SNR_ON=F SNR_R ° * . . °
! If the Data packet received before R_active = T, then SNR_R2 would be notified,
otherwise the SNR_R1 would be notified.
z Instead of notifying SNR_R2 about the receiving of Conn_disc packet, the SNR_R1
is notified on concern of the race condition between R1 and R4. (see Chapter III section 5.a)
3 The signal for time tick generated by the system timer is considered as an internal
event since it is requested by and for the SNR_R2 and SNR_R3 processes in different phase of
a connection.

Table 5.1 - Summarizing of Internal Events for the Receiver Implementation

D. NEGOTIATION OF PARAMETERS

In this implementation, all final decisions of the negotiation parameters to be used for each
connection are made on the Transmitter side. The Receiver responds to the Conn_req packet
sent by the Transmitter with the Conn_ack packet by filling in the maximum capabilities that the
Receiver has. Then the Receiver accepts whatever the parameters that were confirmed by the
Transmitter in the Conn_conf packet. Rules should be followed by the Transmitter to choose the

parameters that would not exceed the Receiver's capability. This way of design was based on the
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phi]osbphy that the Receiver is a passive entity that it should always try to cooperate with the

Transmitter (that carries the request from the client - the application) without launching any

ynnecessary interference.

E. GRACEFUL TERMINATION

By using the shared memory variable SNR_ON, the Receiver machines (child processes)
could be terminated gracefully by the SNR_R (Receiver root). Each machine, when receiving a
signal, checks if SNR_ON is True before it proceeds. If SNR_ON is False, the machine exits the
while loop and does some housekeeping to terminate itself gracefully. The SNR_R does the
housekeeping for its termination after all the child processes are terminated. By "graceful", it is
meant that no timer is requested by SNR_R for the waiting of the child processes to terminate,
and no kill signal (i.e. SIGKILL) is sent to abruptly terminate a child process.”

F. FURTHER EXTENSIONS

There was still some work needed to be done in order to reach the goal that the SNR
protocol can be used to replace the current transport protocols. The works are briefly described
as follows:

1. Multiple Logical Connections

As mentioned in section A.2.a, this implementation could allow for only one logical
connection at a time. To improve the number of logical connections that can be handled
simultaneously in the Receiver, three schemes are suggested as follows:

a. One root, forks one set of Receiver machines with multiple (i.e. MaxLci) sets of data
structures one for each connection. In this scheme, all the data structures that would be used for
a connection should be declared as an array of size MaxLci (e.g STATE[MaxLci],
LOB[MaxLci][LOBsize] eic.) and indexed by the LCI for that logical connection. It would be

inefficient to use the logical connection identifier as an array index since by the nature of the

B If the Receiver is not terminated propesly (€.g. by typing a contol-C on the control terminal etc.), there
would be shared memory and semaphores left over in the host system and need to be cleaned by the user that
invoked the Receiver or by a system administrator with root privilege.
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LCI it could be not be consecutive in the Receiver side and becomes very big. This problem

could be solved by a table look up that converts an LCI to an array index. The structure of the

table is shown on Table 5.2.

Validity
0 123 1
1 246 1
2 XXX 0
3 XXX 0
MaxLci - 1 XXX 0

Table 5.2 - Logical Connection Identifier and Array Index Conversion Table.

The advantage of this scheme is:

« Fast response for connection establishment (no forking processes needed for each
connection).

- Only one set of processes exist through out the whole service period that saves the
operating system overhead for process management. This also speed up the processing after the
connection has been established.

Some problems or disadvantages that come with this scheme are:

« Memory allocated for multiple connections may not be used efficiently. Although there
might be ways for dynamically allocate shared memory that could be shared among all machines
during runtime for each connection but this is considered as optional savings for this scheme.

. Need to identify signals that are sent for a specific logical connection. In the current
UNIX systems, there is no way to identify a signal in a receiving process. Thus, when an
internal event** occurred in a process, before notify the relevant process about this event, some
provisions would be needed to make sure the processes being notified know which LCI this
signal related to in order to perform the proper processing for that logical connection.

b. One root, forks one set of machines for each connection when the connection is

requested. In this scheme, there is only one root process exist when no connection is established.

1 Only the internal events would require the identifying of signal since the external event would only occur
when receiving of packet or termination of this protocol. For the former case, the LCI information is provided in
the packet that received, for the later case, the LCI is irrelevant.
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This root process would fork one set of processes for each connection. This is what a normal
daemon process would do. The advantages of this scheme are:

- Simplifies the design of using multiple connection data structures.

- Efficiently use of the system resources (processes, shared memory etc.).

. Eliminates or reduces signal identification problem.

However, some problems and disadvantages exist in this scheme:

. The root process should get involved in the connection establishment phase (at least
the root process should be notified when a Conn_req packet is received in the T CHAN). Some
functions related to connection establishment up to a certain level (e.g. check the front of
T CHAN, get the packet type etc.) would be necessary to transplant to the root process. This
could complicate the design and affects the role of machine R2 in the connection establishment
phase. From the above discussion, it might lead to a solution by using machine R2 as the root
process. But then all the relationships between R2 and other Receiver machines are affected.
All the works that were currently performed by the root process should be moved to R2. For
each connection, R2 should create the shared memory and semaphores and remove them when
the connection is completed. State 0 would no longer be needed for each machine except for
machine R2 since the other machines terminate when a connection for which they were activated
is completed. In addition, signal identification problem as mentioned in section F.1l.a would
again occur in R2 since it has to handle multiple logical connections.

- The response time for a connection request on the Receiver side would be slow due to

the forking of processes.
. The system load for managing processes would be heavy when many logical

connections being established.
c. One root, forks maximum sets of machines before connection is requested. In this

scheme, the root process forks multiple (i.e. MaxLci) number of processes and have them
waiting for connection request to OCCur. Since this scheme wastes system resources greatly, it is
considered as the last scheme that would be adopted for the multiple logical connection
implementation. No further discussion is provided for this scheme.

One common issue that might be overlooked for the implementation of multiple logical

connection is the use of semaphores. A semaphore is identified by the semaphore id which is
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obtained when creating the semaphore. There should be a unique set of semaphores (that could
be indexed by the LCI in the same way as mentioned in section F.1.a ) provided for each
connection.

Among all the three schemes, the first scheme is recommended since it keeps the nature
of each Receiver machine as per specification; it has a good response time both in connection
establishment phase and after the connection is established; the signal identification problem
would be nasty but still can be solved (busy-waiting could be the last resort); the memory
expenditure would become less and less significant as the evolution of computer technology.
Most of all, this scheme is the only scheme that could work on a separate hardware protocol
processor described in the original design of this protocol in [Ref. 3] since that only contains one
set of protocol machines.

2. Entity-to-entity Communication

In this implementation, the connection could be established for the host-to-host (i.e.
workstation to workstation) communication level. In order to improve the communication to an
entity-to-entity level, the source and destination port numbers®® should be specified for each
connection. This could be implemented by adding two fields - SrcPortNr and DestPortNr in the
connection type packets (i.e. SNRconn_t in this implementation). After the connection been
established, the port number should be stored in shared memory array data structure declared as
SrcPortNr[MaxLci] and DestPortNr[MaxLci] that can be indexed indirectly16 by the logical

connection identifier. However, the entity-to-entity communication issue would better be

considered when designing the APL
3. Application Program Interface (API) Design

The Application Program Interface is the interface that is supported by the transport
protocol and used by the higher layer applications. In designing the API for the SNR transport
protocol, the functions that were described in section A.4 in this Chapter should be considered.
The port numbers and all the negotiation parameters (e.g. connection mode, window size etc.)

should be specified through the API by the application that initiates the connection. Two

i In TCP or UDP, some applications were assigned with well known port numbers for identification (e.g.
the File Transport Protocol has a port number of 12 in TCP, the Telnet server is on TCP port 23 etc.) [Ref. 5].
16 A table lookup would be necessary for converting a logical connection identifier to an array index since

the logical connection identifier could be inefficient to be used as an array index directly.
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popular API for applications using the TCP/IP protocols are called sockets and TLI (Transport
Layer Interface), the former was originally developed by Berkeley Software Distribution (BSD),
and the later was originally developed by AT&T. Detailed description on both the socket and
TLI are provided in [Ref. 4]. It is recommended that if possible an API design for the SNR
protocol could provide all " of the interfaces that these two API have adopted to make the
existing applications that might be needed to alter to the SNR protocol much easier.

4. Port Onto Other Operating Systems

Currently, this implementation could only work on two versions of UNIX system (i.e. the
SOLARIS and IRIX). However, many other operating systems exist today. The least
requirements for an operating system that this implementation could be ported onto is that it
should provide multitasking, signal, timer, semaphore operations, shared memory and IP layer
communication. However, the IP layer communication may not be necessary for a local area

network but then a lower layer communication should be available and the socket operations in

this implementation would all need to be changed.
G. UNCLEARED ISSUES

The following issues related to the SNR protocol were not clearly specified in any

publications. Some possible solutions are given below:

1. LCI Conflict Resolving

It was assumed that a unique logical connection identifier would be available whenever a
transmitter needs to establish a connection. This is true if there is only one host that could
transfer data to the Receiver. Since then, the transmitter side could maintain a cyclic sequence
of LCI to be used for next connection and no LCI conflict would occur. However this is not
always true. When more than two hosts could possibly establish connections for data transfer to
a specific Receiver, if the selections of LCI are not well coordinated among these protocol
machines on different hosts, the conflict would occur and that would mess up the connections.

A possible solution is provided here under the premise that an LCI conflict could only occur

v To provide an exactly complete set of interfaces that the socket or TLI have provided is very important.
Thus the existing applications would need the least modification for the alternation to the SNR protocol. For
some sockets or TLI interfaces that exercises some TCP specific features that are not provided by the SNR
protocol, empty function body with the same function signature could be used.
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during connection establishment phase when the Receiver receives a Conn_req packet that
carries an LCI that has already been used on the Receiver side (i.e. the LCI appears in the LCI
table that was described in F.1. Table 5.2). Under this situation, the Receiver should be able to
detect the conflict by the packet type and the free slot allocating operation in the LCI table. The
Receiver then tries to resolve the conflict by allocating an LCI that is larger by at least MaxLci
than the Transmitter requested LCI and not appear in the LCI table'®. This LCI is stored in the
LCI table and filled in a field in the Conn_ack packet for this provision. On the Transmitter
side, if it observes a rule that it always chooses the LCI increasingly by 1 for each connection,
the Receiver acknowledged LCI should not cause a second conflict with the LCI that is in use in
the Transmitter side and thus the resolved LCI could be adopted and be used for that connection
started from the Conn_conf packet and so on. A timing diagram illustrates the two way LCI

conflict resolving protocol is provided in Figure 5.1

MaxLci =10
Before resolving LCI ( Receiver ) [ Transmitterl Before receiving Conn_ack
Index | LCI |valid Index | LCI | valid
.| =113
Net L0 1113 |1 conn_reatC! 0 [112 | 1
—> 1 x| 0 Net b 1131 1
2 1w 1O —> 2 | o | O
® o N e H § :
: : - n_ack | o /< $ ° s
Madek1| 00C | 0 Conn_ack py ) 13 Macrt| 00 [ 0
= .Res[_cl =123
NextLCl = 114
After resolving LClI After receiving Conn_ack
Index | LCI |valid 423 Index | LCI |valid
§LC\ =
0 | 13| 1 conn_co0 0 | 112 ] 1
Next 1 1231 1 Next 1 123 | 1
—_—y 2 00K 0 — 2 00 0
[] []
i | 2] % i [ 8
Maxtci-1| )00 0 MaxLci1]| )0 0
NextLCI = 124
Figure 5.1 - Conflict LCI Resolving Protocol
8 The word 'larger' is in a cyclic manner. i.e. if the maximum LCI is reached, 0 or 1 may be used. With an

unsigned character field for the LCI in this implementation, 255 LCI's could be used repeatedly. This is sufficient
for either the Transmitter or the Receiver to avoid second LCI conflict using the rules provided. It should note
that the resolve LCI chose by the Receiver need not and better not be larger than all the LCI's that appear in the
Receiver LCI table. As long as the LCI is larger than the LCI in the Conn_req packet by MaxLci and the LCI is
not appeared in the LCI table, then this is a qualified resolve LCL
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One might ask "If the Receiver receives two hosts sending Conn_req with the same LCI
at the same time? Wouldn't they both be resolved by using the same LCI on the Receiver side?"
It should note that in a non multiprocessing system, no matter how close the two requests are,
there is always one request can be processed before the other. Thus for this situation, the first
conflict LCI would be resolved as the requested LCI + MaxLci, the second LCI would cause a
conflict and by the rule that an LCI should be larger than the requested LCI by at least MaxLci,
the requested LCI + MaxLci + 1 (if there was no LCI in the Receiver LCI table take on this
" value) would be chose for the second connection. These LCI's are all unique in the Receiver

LCI table. Figure 5.2 illustrates the resolving for this case that would be referred to as

"contention on the Receiver side."

index { LCI |valid MaxLci = 10
Net |0 1113 1 1 Receiver | Tx1 @
—_— 1 00K 0
2 |ox | O 3
_ 443 o=
AR o st L= com =
Maxtck1] 20X 0
Index | LCI |valid Con,
et N .
0 | 113 | 1 Conn";ckk';c' =113 Resolving first
—= - GSLC = i
Next |1 11231 1 N} LCI conflict
2 |»x | O
® ] 3
2 o o §LC = A2
wﬂ .
MaxLci-1| 200X 0 Conn
. Con .
index | LCI |valid conn”;ik.m/ =113 Resolving second
0 | 113 | 1 ~XRestcr=13; | LCI conflict
Next 1 123 1
[ ]
s | 8] ¢ Lc1=133
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i 2 [
[ ] []
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Figure 5.2 - Conflict LCI Resolving Protocol (Contention On the Receiver Side)
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Others might ask "What if the Transmitter after sending the Conn_req for a connection
that caused an LCI conflict, before the Conn_ack that carries the resolved LCI is received,
another Conn_req with an incremented LCI is sent for another connection by the same
Transmitter. Wouldn't the resolved LCI be conflict with the LCI that is used for the second
connection on the Transmitter side?" The answer is that the Receiver chose an LCI that is larger
than the requested LCI by at least MaxLci. The Transmitter should not get any LCI conflict if it
increased the LCI for the second connection by 1. The timing diagram that illustrates the

resolving of this case is given in Figure 5.3 and would be referred to as "contention on the

Transmitter side."
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Net |—0—]113 | 1 Receiver ) Tx1 Net |—0 1113 | 1
— 1 ] ox 0 — 1t lwox | 0
2 lox | O 2 Jox | O
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Figure 5.3 - Conflict LCI Resolving Protocol (Contention On the Transmitter Side)
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2. Unsettled Negotiation Parameters

In the specification, connection can be established when machine R2, after reply the
Transmitter with Conn_ack, receives Conn_conf, T_state or Data packet. If the connection is
established by the receiving of Conn_conf, the negotiation parameters could be retrieved from
this packet and be adopted for this connection, so nothing would go wrong. But if the
connection is established by the receiving of T_state packet or Data packet, there would be no
way for the Receiver to get the negotiation parameters for the connection. This would cause
problem since the Receiver side and the Transmitter side may use different parameters for
communication. One solution could be using the parameters provided in Conn_regq, but what if
the requested parameters are out of the Receiver's capability? Other solution could be change
the specification to have the connection could only be established by the receiving of Conn_conf
packet. The later is more conservative thus more secure but what should be done if some Data

packets arrives before the Receiver receives the Conn_conf packet due to the network routing?

This is an issue that requires further study.
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V1. SUMMARY

In this thesis the implementation of the SNR high speed network communication protocol
has been described. This thesis is concerned primarily with the receiver part of the protocol; the
transmitter part was implemented and described in another thesis [Ref. 2].

Much work has been done since the initial design of the SNR high speed network
communication protocol [Ref. 3]. The formalizing of the specification [Ref. 1], analyzing and
simulation of the protocol were accomplished prior to this thesis. There is no doubt about the
careful consideration of the specification for this protocol in the previous work. However, an
implementation is a very detailed work that usually leads to some unexpected problems.

The problems encountered during the implementation include:

- the signal loss problems;

- the shared memory key base conflict problems;

- the process synchronization problems;

- the scheduling problems;

- the C compiler data alignment problems;

and some problems that were caused by unfamiliarity of the UNIX system calls and the
UNIX system environments. Fortunately, these problems could be solved in a way that does not
affect the features of this protocol.

Some changes to the specification were made to correct errors that were found during the
implementation or to make the specification more practical for implementation. These changes
include:

- additional field added to the SNR packet header;

- additional packet types formats defined for some insufficiently specified packets;

. internal states used to better describe some states;

- corrections for incorrect predicate conditions;

- initialization of data structures specified in the corresponding state;

- timer service request and cancellation specified in the corresponding states;

- the solutions for signal lost and processes contention problems; and
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. out-of-band packets used for practical implementation.

A system schematic diagram was drawn to give a high level description of this
implementation. Categorized program structures of protocol machines were described as well.

The testing of this implementation incorporated with the Transmitter implementation was
described. These tests include:

- using different modes for connections;

- lost packets;

- duplicate packets;

- large data transfer; etc.

Though this is still not a fully mature implementation and the testing network
environment was not as complicated as a production environment, tuning was still performed on
this implementation to gain some experiences of how the implementation would respond to the
change of these tuning parameters. Goals of tuning were set up as follows:

- to ensure the connection could be established as long as the Receiver is activated and the

network is working;

- to minimize the unnecessary retransmissions;

-to have R_state control packets being sent in a sufficient manner; and

. to have timeout disconnection initiated only when problem really occurred on the

connection.

In order to know which work has been done and which work has not been sufficiently
done in this implementation, evaluation of this implementation was given. The issues include:

- maintainability;

- portability;

- daemon process;

- event driven;

- negotiation of parameters;

. graceful termination; and

- further extensions.

For further extensions of this implementation, the following issues were addressed:
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- multiple logical connections;

- entity-to-entity communication (also known as multiplexing);

- application program interface (API) design; and

- port onto other operating systems.

Possible solutions were provided to the uncleared issues that were not included in the
specification and have appeared in the related publications. The issues include:

- logical connection identifier conflict resolving; and

- unsettled negotiation parameters.

In this thesis, some issues that may sound trivial or wordy but were still included for the
completeness and to retain the many experiences that were gained in the process of developing
this implementation as possible.

By the implementation and testing result of the core of this protocol, the functionality of
this protocol has been proven as it was specified. There is still much work that needs to be done
to really make this protocol an alternative to the existing transport protocols. However, if the

studies go on, the goal will eventually be reached.
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APPENDIX

The main programs and functions mentioned in this paper are summarized here to avoid
interrupting the flow of the body text. There are totally eight programs that have been designed
for this implementation. They are snr r.c, snr_rl.c, snr r2.c, snr_r3.c, snr_rd.c, snr_tc.c,
snr_que.c and snr_util.c. Five header files were defined for the implementation as well. They
are snr_env.h, snr_tr.h, snr rh, snr_queh and snr_utiLh. One program sem.c for semaphore
operations was referred to [Ref. 4]. Not all details are shown here. Some functions may have
only their prototye shown and few lines of description or even completely omitted if the
processing is plain.

A. snr_r.c

The Receiver root process.

1. Main program

void
main() {
Create shared memory;
Attach to shared memory by the pointer Shm;
Create semaphores for INBUF, scount, received and T_CHAN;
Initialize shared memory data structures;

/* Create raw (IP layer) socket for SNR protocol */
Shm->Tsock = socket(AF_INET, SOCK_RAW, PROTO_SNR);

/* Turn the Receiver main power on */
Shm->SNR_ON = True;

/* Activates each processes */

Shm->Pid[1] = Activate(SNR_R1);
Shm->Pid[2] = Activate(SNR_R2);
Shm->Pid[3] = Activate(SNR_R3);
Shm->Pid[4] = Activate(SNR_R4);
Shm->Pid[5] = Activate(SNR_TC);

Wait for system administrator to terminate the protocol;

/* turn the Receiver main power off */
Shm->SNR_ON = False;
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/* Inform each processes about the termination and wait for them to terminate */
for (1=R1;i1<=TC; i++) { /* inform all machines about termination */
notify(i);
wait for the machine to terminate;

}

Detach shared memory;
Remove shared memory;
Close all semohpores;

} /¥ SNR_R */
snr_rl.c

The machine R1 of the Receiver.

1. Main program

void
main() { /¥ SNR_R1 */
int STATE =0;

flag TxCompleted = False;
Attach to shared memory by the pointer Shm;
Open Semaphores for INBUF, received and T CHAN;
while (Shm->SNR_ON) {
WaitForEvent();
switch (STATE) {
case 0:
if (Shm->R_active) /* start */
Initialization();
STATE =1;
break;
case 1:
ProcTchanPkts();
if ('Shm->R_active) { /* finish */
if (\Shm->Disconnect) { /* Tx completed, retrieve all data packets */

ProcTchanPkts();
TxCompleted = True;
}
STATE = 0;

} /* if finish */
if ((Shm->Disconnect) && (Shm->recieved || TxCompleted))
Notify(R4); /* inform R4 data received or Tx Completed */

break;
} /* switch */
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} /* while */
Detach shared memory;
Close all semohpores;
} /* SNR_R1#*/

2. Functions

a. Initialization
void
Initialization() {
/* Initialize RECEIVE, AREC, LOB, INBUF */
for (i = 0; i < RCVsize; i++)
Shm->RECEIVE[i] = 0;
for (i =0; i < ARECsize; i++)
Shm->AREC][i] = 0;
for (1= 0; i <LOBsize; i++)
Shm->LOB[i] = 0;
for (i = 0; i <INBUFsize; i++)
Shm->INBUF(i].datalen = 0;
Shm->INBUFHead = InitSeqNr;
Shm->LWr = InitSeqNr;
Shm->UWr = LWr + NegoWinSize - 1;
Mode = Shm->NegoMode;
BlkSize = Shm->NegoBlkSize;
BufSizeInBlk = INBUFsize / BlkSize;
TxCompleted = False;
} /* Initialization */

b. UpdLWrUWr
void
UpdLWrUWr() {
pos = NDX(Shm->L Wr, BufSizelnBIk);
while (BitIsSet(Shm->AREC, pos) && (Shm->LWr < Shm->UWr)) {
CIrBit(Shm->AREC, pos);
pos = NDX(++Shm->L Wr, BufSizeInBIk);
}
Shm->UWr = Shm->LWr + Shm->NegoWinSize - 1;
} /* UpdLWrUWr */

c¢. OrderInsert
flag
OrderInsert(SNRpkt t *pkt) {
BIkNr = pkt.seq.BlkNo;
PktNr = pkt.seq.PktNo;
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SeqNr = (BIKNr - InitSeqNr) * BlkSize + PktNr;
INBUFndx = NDX(SeqNr, INBUFsize);
if (BIKNr < Shm->LWr || (BIkNr > Shm->UWr)
|| BitIsSet(Shm->RECEIVE, INBUFndx) {
/* duplicated or out of flow control packet */
return True;
Yelse { /* process packet */
Shm->INBUF[INBUFndx].datalen = pkt->hdr.datalen;
beopy(pkt->info.Dat.data, Shm->INBUF[INBUFndx].data, pkt->hdr.datalen);
SetBit(Shm->RECEIVE, INBUFndx);
Shm->UWr = max(Shm->UWr, BIkNr);
Shm->BufAvail--;
if (BlkAlISet(SeqNr)) {
SetBit(Shm->AREC, NDX(BIkNr, BlksPerBuf)); /* Update AREC */
if (BIkNr = Shm->LWr) /* Update LWr, UWr */
UpdLWrUWr();
BitsCopy(Shm->AREC, Shm->LOB, Shm->LWr,
Shm->NegoWinSize, Shm->L, BlksPerBuf); /* Update LOB */
} /* if BlkAllSet */
} /* else process packet */
return False;
} /* OrderInsert */

d. ProcTchanPkts
void
ProcTchanPkts() {
PktType = PeekQue(T_chan);
while (PktType != INVALID) { /* Not Empty */
Pkt = DeQue(&T_CHAN);
if (PktType == Data) { /* receive */
Duplicate = False;
if (Mode = 0) /* no buffer */
PassDataToHost(Pkt);
else {
if (Mode == 1 || Mode == 2) { /* buffer */
duplicate = OrderInsert(&Pkt);
} /* if buffer */
} /* else */
if (!duplicate) {
Shm->received = True;
} /* if duplicate */
} else
if (PktType == Conn_disc) /* remember to notify R2 */
Shm->Conn_discFlag = True;
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PktType = PeekQue(&T_CHAN);
} /* while */
if (Shm->Conn_discFlag)
Notify(R2);
} /* ProcTchanPkts */
e. Interfacing functions
The following functions are defined for proofing the implementation, they all need
to be redefined when developing the interface between the SNR protocol and the
applications.
void PassDataToHost();
Stores the retrieved packet data into an out buffer for display.
void ShowOutBuf();
Displays the out buffer for testing purpose.

C. snr_r2.c

The machine R2 of the Receiver.
1. Main program
void
main() { /* SNR_R2 */
int STATE =0;
Attach to shared memory by the pointer Shm;
Open Semaphores for scount and T_CHAN;
while (Shm->SNR_ON)}) {
WaitForEvent();
switch (STATE) {
case 0:
while ((PktType = PeekQue(&T CHAN) != Conn_req ) &&
('Empty(&T_CHAN))
DeQue(&T_CHAN); /* skip to the first Conn_req pkt */
if (PktType == Conn_req ) { /* ack for conn_req */
conn_req = DeQue(&T_CHAN);
Evaluate(&conn_req); /* evaluates the parameters and construct conn_ack */
SendPkt(&conn_ack); /* send the acknoledge packet over R_CHAN */
TimerIsOn = ReqTimerSrv(IPT); /* request timer service for state 1 */

Initialization();
STATE =1;
}
break;
case 1:

PktType = GetPktType();
if (PktType == INVALID) { /* Empty(T_CHAN) */
if (TimerIsOn) {
delay++;
if (delay < reset) /* ok */
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SendPkt(&conn_ack);
else { /* time out */
TimerlsOn = CancelTimerSrv();
STATE = 0;
}
} /* if timer is on */
} else { /* T_CHAN is not empty */
if (PktType == Conn_conf) ||
(PktType ==T state) ||
(PktType == Data)) { /* start */
if (PktType == Conn_conf) { /* retrieve negotiated parameters */
conn_conf = DeQue(&T CHAN);
RetrieveNegoPara(&conn_conf); /* added */
}
TimerIsOn = Cancel TimerSrv();
STATE =2;
Shm->R_active = True;
/* inform R1, R3 and R4 R_active = True */
Notify(R1);
Notify(R3);
Notify(R4);
} else /* not start */
if (PktType == Conn_req) { /* lost ack */
DeQue(&T_CHAN);
SendPkt(Conn_ack);
} /* if lost ack */
} /* else T_CHAN is not empty */
break;
case 2:
PktType = GetPktType();
if (PktType ==T state ) {
SeqNr = Shm->T_statePkt.SeqNr;
if (SeqNr > high) { /* update */
high = SeqNr;
} else { /* no update */
if ((PktType == Conn_conf) || (PktType == Conn_req)) { /* discard */
DeQue(&T_CHAN);
else
if ((Shm->Disconnect) || (PktType == Conn_disc)) { /* finish */
Shm->R_active = False;
STATE = 0;
/* inform R1, R3 and R4 R_active = False */
Notify(R1);;
Notify(R3);
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Notify(R4);
} /* if finish */
} /* else no update */
break;
} /* switch */
} /* while */
Detach shared memory;
Close all semohpores;

} /* SNR_R2 */
2. Functions

a. Initialization
void
Initialization() {
high = 0;
delay = 0;
Shm->T_stateFlag = False;
Shm->Conn_discFlag = False;
} /* Initialization */
b. GetPktType
int
GetPktType() {
if (Shm->Conn_discFlag) {
Shm->Conn_discFlag = False;
return(Conn_disc);
} else
if (Shm->T _stateFlag) {
Shm->T _stateFlag = False;
return(T_state);
} else
return(PeekQue(&T_CHAN));
} /* GetPktType */
c. Evaluate
Prototype: void Evaluate(SNRpkt_t *conn_req);
This function evaluates the parameters retrieved from the packet Conn_conf sent
by Transmitter to determine the paremeters to be used in Conn_ack that will be
sent back to the Transmitter.
d. SendPkt
Prototye: void SendPkt(SNRpkt t *pktP);
This functin sends the packet over the R_CHAN.

snr_r3.c

The machine R3 of the Receiver.
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1. Main program

void
main() {/* SNR_R3 */
int STATE =0,
Attach to shared memory by the pointer Shm;
Open Semaphores for scount and received;
while (Shm->SNR_ON) {
WaitForEvent();
switch (STATE) {
case 0:
if (Shm->R_active) /* start */
TimerIsOn = ReqTimerSrv(Tin); /* request timer service for state 1 */

Initialization();
STATE=1;
break;
case 1:

if (!Shm->R_active) { /* finish */
TimerIsOn = Cancel TimerSrv();
STATE =0;
}else
if (TimerIsOn) { /* clock */
Shm->scount++;
State4 = True; /* need to enter internal state 4 later */
if (!Shm->received) { /* no_data */
countt+;
if (count >= k) || (Shm->scount >= Lim) { /* timeout */
BuildRstate();
SendPkt(Rstate);
k = min(2 * k, Klim); /* expand Tin */
} else /* delay */
State4 = False; /* doesn't need to enter internal state 4 later */
} else { /* data */
BuildRstate();
SendPkt(Rstate); /* send R_state to ack the packet received */
} /* else data */
if (State4) { /* internal STATE 4 */
if (Shm->scount < Klim) { /* no disc */
Shm->received = False;
count = 0;
} else { /* disc */
TimerIsOn = Cancel TimerSrv();
Shm->Disconnect = True;
State = 5;
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/* inform R2 and R4 Disconnect = True */
Notify(R2);
Notify(R4);
} /* else disc */
} /¥ if STATE 4 */
} 7* if clock */
break;
case 5:
if ('Shm->R _active) /* confirm */
STATE = 0;
break;
} /* switch */
} /* while */
Detach shared memory;
Close all semohpores;

} /* SNR_R3 */
2. Functions

a. Initialization

void
Initialization() {
count = 0;

CurrBIkNr = InitSeqNr;
CurrPktNr = InitSeqNr;
Shm->scount = 0;
Shm->k = InitK;
} /* Initialization */
b. BuildR_state

Prototype: void BuildR_state();

This function constructs the R_state packet using the informations available inside

the Receiver.
c. SendPkt
See SNR_R2 function SendPkt.
snr_r4.c

The machine R4 of the Receiver.

1. Main program

void
main() {/* SNR_R4*/
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int STATE=0;
Attach to shared memory by the pointer Shm;
Open Semaphore for INBUF;
while (Shm->SNR_ON) {

WaitForEvent();

switch (STATE) {

case 0:

if (Shm->R_active) && (mode == 1 || mode == 2)) { /* start */
NotifyHostAboutConnection(mode);

Initialization();
STATE =1;
break;
case 1:

if (Shm->Disconnect) { /* disc */
NotifyHostAboutDisconnection();
STATE = 0;
} else { /* not disc */
if ('Empty(INBUF) && SignalFromHost) { /* accept */
/* State2 */
if (mode == 2) { /* err chk */
RetrieveMode2();
} else /* no err */
/* State3 */
if (WaitBulk(wait_lim)) /* retrieve */
RetrieveModel();
} /* if retrieve */
/* Statel */
} /* else no err */
} /* if accept */
if (!Shm->R_active) { /* finish */
NotifyHostAboutCompletion();
STATE = 0;
} /* if finish */
} /* else not disc */
break;
} /* switch */
} /* while */
Detach shared memory;
Close all semohpores;

} /* SNR_R4 */
2. Functions

a. Initialization
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Initialization() {
for (i = 0; i < OUTBUFsize; i++)
*(OutBuf +1) = 0;
TotalDatalLen = 0;
BIkSize = Shm->NegoBlkSize;
BufSizeINBlk = INBUFsize / BlkSize;
WinSizeInPkt = Shm->NegoWinSize * BlkSize;
wait_lim = BlkSize * AcceptableRatio;
} /* Initialization */
b. WaitBulk
WaitBulk(int BulkCnt) {
return(!BitIsSet(Shm->RECEIVE, Head) &&
(NrBitSet(Shm->RECEIVE, NDX(*Head + 1, INBUFsize),
BSTART(*Head, BlkSize, INBUFsize)) < BulkCnt));
} /* WaitBulk */
c. RetrieveModel
RetrieveMode1() {
BIkNr = BLKNDX(Head, BlkSize, BufSizelnBlk);
Skip = False;
if (!BitIsSet(Shm->RECEIVE, Head) { /* skip this packet */
SetBit(Shm->RECEIVE, Head);
Skip = True;
¥
while (BitIsSet(Shm->RECEIVE, Head)) {
if (!Skip)
PassDataToHost();
else {
Skip = False;
if (BlkAllSet(Heae)) { /* promote the stucked LWr */
SetBit(Shm->AREC, NDX(BIkNr, BlksPerBuf));
if (BIkNr = Shm->LWr)
UpdLWrUWr();
/* update LOB */
BitsCopy(Shm->AREC, Shm->LOB, Shm->LWr,
Shm->NegoWinSize,
Shm->L, BlksPerBuf);
Shm->Buffer avail--;
} /* if BlkAllSet */
} /* else */
if (BlkCompleted()) {
Shm->Buffer_avail++;
ClrBlk(Shm->RECEIVE, BlkNr, BufSizelnBlk);
} /* if BlkCompleted */
INC(Head, INBUFsize);
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BIkNr = BLKNDX(Head, BlkSize, BufSizeInBIk);
} /* while */
} /* RetrieveModel */
d. RetrieveMode2
RetrieveMode2() {
BIkNr = BLKNDX(Head, BlkSize, BufSizeInBIk);
while (BitIsSet(Shm->RECEIVE, Head)) {
PassDataToHost();
if (BlkCompleted()) {
Shm->Buffer avail++;
ClrBlk(Shm->RECEIVE, BlkNr, BufSizelnBlk);
3 /* if BlkCompleted */
INC(Head, INBUFsize),
BIkNr = BLKNDX(Head, BlkSize, BufSizelnBlk);
} /* while */
} /* RetrieveMode2 */
e. UpdLWrUWr
See SNR_R1 function UpdLWrUWr.

snr_tc.c

The Transmitter channel.

1. Main program

main() {/* SNR_TC/
Attach to shared memory by the pointer Shm;
Open semaphore for T _CHAN;
while (Shm->SNR_ON) {
len = recvfrom(Shm->Tsock, IPpkt); /* get IP packet from T CHAN */
PktType = ExtractPkt(IPpkt, len, &SNRpkt); /* extract SNR pkt from IP pkt */
switch (PktType) { /* notify relevant machines */
case T_state:
if (CheckSumOKk) {
Shm->TstatePkt = SNRpkt; /* latest T state packet */
Shm->TstateFlag = True;
}
Notify(R2);
break;
case Data:
if (CheckSumOk) {
EnQue(&T CHAN, &SNRpkt);
if (!Shm->R_active)
Notify(R2);
else /* inform R1 */
notify(R1);
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}
break;

case Conn_req:
EnQue(&T CHAN, &SNRpkt);
notify(R2);
break;

case Conn_conf:
EnQue(&T _CHAN, &SNRpkt);
Notify(R2);
break;

case Conn_disc:
EnQue(&T_CHAN, &SNRpkt);
Notify(R1); /* R1 will notify R2 about Conn_disc */

break;

case R_state:  /* discard self send packets */
break;

case Conn_ack: /* discard self send packets */
break;

} /* switch */
} /* while */

Detach shared memory;
Close semohpore;

}/* SNR_TC */
2. Function

a. ExtractPkt

u_char
ExtractPkt(u_char *IPpkt, int pktlen, SNRpkt_t *pktP) {
pktlen = pktlen - [PhdrLenInBytes; /* get SNR packet length */
snrP = (SNRpkt t *) (IPpkt + IPhdrLenInBytes); /* points to SNR packet */
pktP->hdr = snrP->hdr; /* extract header information */
InfoLen = pktlen - sizeof(SNRhdr t);
beopy(snrP->info.Dat.data, pktP->info.Dat.data, InfoLen);
ErrChkP = (int *) ((u_char *) snrP->info.Dat.data + InfoLen - ErrChkSize);
ChkSumOk = (ChkSum(u_short *) snrP, pktlen - ErrChkSize) == *ErrChkP);
return(pktP->hdr.type);
} /* ExtractPkt */
snr_que.c
This program is a collection of packet queue operation functions.
1. Data structure
typedef struct {
SNRpkt_t que[PktsPerBuf];
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int front,
tail;
flag full;
} PktQ_t;
By defining the PktQ_t type, the T_CHAN can be declared in the program as
PktQ_t T_CHAN;

and the address of T_CHAN (i.e. &T_CHAN) could be passed as a parameter for
every queue operation function since all the information that required to operate the
packet queue has been included inside the PktQ_t data structure already. This means
we need only one queue operation program that could operate on many different
queues of the PktQ_t type. It would not be very helpful to make this kind of design if
there is only one queue in the whole implementation. But note that it might become
necessary to have many T_CHANSs one for each connection when improving this
implementation in the future. Another benifit of using this design is to make the
program looks more like the specification (e.g. EnQue(&T_CHAN) etc.) and this is an
effort that author has being put through out the whole implementation.
2. Functions
a. EnQue
void EnQue(SNRpkt *pktP, PktQ_t *Pq);
This function put the SNR packet in the packet queue.
e.g. EnQue(&T_CHAN, conn_ack);
b. DeQue
SNRpkt t DeQue(PktQ_t *Pq);
This function gets a SNR packet from the front of the packet queue.
e.g. conn_req = DeQue(&T_CHAN);
c. PeekQue
u_char PeekQue(PktQ_t *Pq);
This function checks if the queue is empty, if not, it returns the packet type of the
packet at the front of the queue. If the queue is empty, it returns INVALID.
e.g. PktType = PeekQue(&T_CHAN);
d. InitQue
void InitQue(PktQ_t *Pq);
This function initializes the queue.
e.g. InitQue(&T_CHAN);
e. Empty
flag Empty(PktQ_t *Pq);
This function returns True if the queue is empty.
e.g. if (Empty(&T_CHAN)) ...
H. snr_util.c
This program is a collection of general utility functions. These functions include bit
operations, timer and check sum.
1. Bit operation functions
Due to the fact that ths SNR protocol starts the sequence number from one, the bit
operation functions that need to access to some arrays (e.g. INBUF, AREC etc.) using the
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sequence number has to subtract one before indexing to the array in order to access the array
from the first element (e.g. INBUF[0]). These offset problem has been taken care of by all the
bit operation functions in this program so the array index arguments need not to be subtracted
before the call.
a. SetBit
void SetBit(u_char *BITS, int BitPos);
This function sets the bit in BITS at BitPos to 1. (Note that the BITS is an array of
unsigned characters that has finite length, this function doesn't do any boundary
checking but leave this to the user's responsibility. Also note that the minimum
BitPos is 1 rather than 0).
e.g. SetBit(AREC, BIkNr);
b. CirBit
void ClrBit(u_char *BITS, int BitPos);
This function clears the bit in BITS at BitPos to 0.
e.g. CIrBit(RECIEVE, Head);
c. BitlsSet
flag BitIsSet(u_char *BITS, int BitPos);
This function checks if the bit in BITS at BitPos is 1.
e.g. if (BitIsSet(RECEIVE, SeqNr)) ...
d. NrBitsSet
int NrBitsSet(u_char *BITS, int start, int end);
This function counts how many bits in BITS from start to end is 1. (Note that this
function would wrap arround when the bit position exceeds the array boundary.
This is done for circular buffers in the SNR protocol. e.g. RECEIVE)
e.g. EmptyINBUF = INrBitsSet(RECEIVE, Head, INBUFsize, BlkStart);
e. ClrBlk
void ClrBlk(u_char *BITS, int BlkNo, int BlkSize);
This function clears BlkSize number of bits at the positions specified by BlkNo in
BITS to 0.
e.g. CIrBIK(RECEIVE, BIkNr, BlkSize);
f BitsCopy
void BitsCopy(u_char *SRC, u_char *DST, int start,
int CpySize, int DSTsize, int SRCsize);
This function copies CpySize of bits in SRC started from the start position to DST
started from the first element. If the CpySize is smaller than the DSTsize, the rest
bits of DST would be set to 0. The wrap arround of SRC is taken care of in this
function by using SRCsize.
e.g. BitsCopy(AREC, LOB, LWr, NegoWinSize, L, ARECsize);
2. Timer functions
a. ReqTimerSrv
flag ReqTimerSrv(int tick);
This function requested a periodic timer that will send signal SIGALRM to the
process every tick microseconds. It always returns True.
e.g. TimerlsOn = ReqTimerSrv(Tin);
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b. ReqTimerSrv
flag CancelTimerSrv(int tick);
This functin cancels the timer service. It always returns False.
e.g. TimerIsOn = Cancel TimerSrv();

3. Check sum

This function does the check sum computation. (Refers to [Ref. 4] pp. 455).

a. ChkSum
int ChkSum(u_short *ptr, int nbytes);
This function computes the check sum of the data structure pointed by ptr for
nbytes. In this implementation, the check sum is computed for the received SNR
packets from header through all the data field exclude the error check field. Note
that since the error check field should always immediately following the last data
byte in the packet and the data length of a data packet varies from connection to
connection, the error check field has to be determined at runtime by using a

pointer.
e.g. ChkSumOk = ChkSum((u_short *) snrP, pktlen - ErrChkSize) == *ErrChkP);

L snr_env.h
This header file defines macros that cover up the differences exist between two target

UNIX system (i.e. SOLARIS and IRIX) environments. By using this file, no macro needs to
appear in the C programs for different environments thus increases the programs readability and

maintainability. Some macros were defined for the preferences of the author as well.

J. snr_tr.h
This program collects all the definitions that should be common to both the Transmitter

and the Receiver. The definitions are categorized as following:
1. IP Definitions

a. PROTO _SNR - The IP protocol number for SNR protocol.
b. IPhdrLen - IP header length that used to computes the maximum SNR data length.

2. SNR Implementation Limits

a. MaxLci - the maximum logical connection identifier allowed.
b. MaxPktSize - the SNR maximum packet length.

¢. MaxWinSiez - the maximum window size (in blocks).
3. Definition for SNR packet types

a. #define R _state 0
b. #define T state 1
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c. #define Data 2
d. #define Conn_Req 3
e. #define Conn Ack 4
f #define Conn Conf 5
g #define Conn Disc 6

4. Definitions for Shared Memory Key Base Values

a. #define TxShmKBase 7890
b. #define RxShmKBase 8890

5. Definitions for SNR packets

The following SNR packet type structures were defined.
a. SNRhdr_t - the SNR header type.
b. SNRdata_t - the SNR data packet type.
c. SNRrstate t - the SNR R_state packet type.
d. SNRistate t - the SNR T state packet type.
e. SNRconn_t - the SNR connection packet type. Which includes Conn_req,
Conn_ack, Conn_conf and Conn_disc packet types.
f SNRinfo_t - the union of all SNR packet types (i.e. SNRdata_t, SNRrstate_t,
SNRtstate_t and SNRconn_t) . This makes the receiving buffer could be uniformly
retrieved as a general SNR packet type and later be used as different packet types
without using casting.
g SNRpkt t - the general SNR packet type. Which is constructed by SNRhdr_t and
SNRinfo_t.

6. Definition for INBUF data structure

a. BUFdata_t - The element structure of INBUF array. Consist of data length and the

data.
K. snr_r.h
This file defines macros or data structures common to all the Receiver machines. There

is actually one data structure defined in this file - SNRshmRec, for shared memory.
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1. Receiver machine definitions

a. #define RI 1
b. #define R2 2
c. #define R3 3
d. #define R4 4
e. #define C 5
[ #define Nprocesses 6

2. Tuning parameters for Receiver

These parameters are collected to make the tuning easier.

a. kou - the constant for compute Tin, used by R2.

b. TOtick - timeout counts for reset, used by R3.

¢. Klim - the limit for count, used by R3.

d. Lim - the limit for scount, used by R3.

e. InitIPT - the IPT value in micro seconds, used by R2.

f AcceptableRatio - the ratio that used to determine the wait_lim, used by R1 in mode

L
3. Unspecified initial values
a. InitMode - best mode that can be provided by the Rx, used by Receiver Root.
b. InitK - the initial k value, used by R3.
4. Shared memory key definition
a. SHMKEY - the shared memory key base value

5. Semaphore key definition

a. SEMKEYI - the semaphoe key value, used by INBUF semaphore

b. SEMKEY? - the semaphoe key value, used by SCOUNT semaphore

c. SEMKEY3 - the semaphoe key value, used by RECEIVED semaphore
d. SEMKEY4 - the semaphoe key value, used by T CHAN semaphore

e. PERMS - shared memory creation option
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6. Shared memory record - SNRshmRec

All the shared memory variables or data structures are included in this record.
a. Transmitter channel - shared by T CHAN, R1, R2.
PktQ _t T_CHAN;
b. Input buffer - shared by RI and R4.
BUFdata t INBUF[INBUFsize + InitSeqNr];
int INBUFHead;
c. Output buffer - shared by R1, R4 and supposingly the host.
u_char OUTBUF[OUTBUFsize];
d. Out-of-band packets - shared by T CHAN and R2.
SNRpkt t TstatePkt;
flag T statePkt;
flag Conn_discFlag;
e. Transmitter channel socket id - shared by T CHAN, R1, R2 and R3.
int Tsock;
struct sockaddr_in Xmtr;
f Logical connection identifier - not implemented in this implementation.

Supposingly these variables should be shared by all processes when multiplexing is

implemented.
int LCI[MaxLci];
int CurrLciNdx;

g. Receiving states - shared by R1, R2 and R3.

u_char RECEIVE[RCVsize];
u_char AREC[ARECsize];
u_char LOB|[LOBsize];

h. Process ID - shared by T CHAN, RI1, R2, R3 and R4 for sending signals.
int Pid[Nprocesses];

i. Inter-process control flags - shared by R1, R2, R3 and R4.
flag R active;
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L.

flag received;
flag Disconnect;

J. Mescellaneous variables

int mode;

int peakBW;

int LWr;

int UWr,

int Buffer avail;
int scount;

int L;

int k;

int Tin;

int IPT;

k. Negotiated parameters - shared by R1, R2, R3 and R4

int NegoMode;
int NegoWinSize;
int NegoPeakBW;
int NegoRTD;
int NegoPktSize;
int NegoBlkSize;
I Receiver main power - shared by T CHAN, R1, R2, R3 and R4.

flag SNR_ON;

Other header files

1. snr_que.h

The header file for snr_que.c.

2. snr_util.h

The header file for snr_util.c.
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